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Exit Criteria for Simpson's Compound Rule* 

By J. H. Rowland and Y. L. Varol 

Abstract. In many automated numerical algorithms, the calculations are stopped when the 
difference between two successive approximations is less than a preassigned tolerance. The 
dependability of this procedure for Simpson's compound rule has been investigated. Classes 
of functions have been determined for which the above criterion is (a) always valid, and (b) 
asymptotically valid. A new exit rule is proposed which appears to be less conservative 
than the standard technique. 

1. Introduction. Let f be integrable on [a, a + h], and 

ra+h 

If = I[a, a + h]f(x) = Ia f(x) dx. 

Simpson's compound rule, with 2m + 1 points, approximates If by 

S(m)f - S(m)[a, a + h]f(x) 

(1) _ h ~ ~ ~ ~ ~~ m m-l ( 
)(a) + 4 ff(x2il) + 2 E f(x2i) + f(a + h)] 

6 6m L= 

where xi = a + jh/2m. A traditional method of applying Simpson's rule is to evaluate 
S('lf, S(2)f, S(4)f, *. and accept S'2m) as a sufficiently accurate result when 

(2) IIS(m)f _ S(2m)fI < 

where e is the preassigned tolerance. Adaptive routines use essentially the same method 
applied to a number of subintervals. Such a procedure may be justified in terms of a 
stopping inequality. 

Definition. The inequality 

S(m)f - S(2m)fI ?: IS(2m)f - If| 

will be referred to as the stopping inequality. The validity of the stopping inequality is 
sufficient to insure that the value S(2m'f, accepted as the final result by the above exit 
criterion, will be within the tolerance e. 

Clenshaw and Curtis [2] have given an example where (2) is satisfied while the 
error is much greater than e. On the other hand, Lyness [5], among others, has observed 
that an exit procedure based on (2) is likely to be too conservative when f (4) is Lipschitz 
continuous. 
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The purpose of this paper is to determine classes of functions for which 
(a) the stopping inequality is valid for all m, 
(b) the stopping inequality is valid for all m greater than some threshold mi. 
On the basis of the analysis presented here, we will also discuss a modification of 

the standard exit procedure. 

2. Functions with Fourth Derivatives of Constant Sign. In this section, we 
will show that the stopping inequality is valid for all m if f '4 does not change sign 
on the interval of integration. We will also show that the inequality is sharp. Before 
doing this, let us establish several lemmas. 

LEMMA 1. Let f C C'4'[a, a + h]. Then 

S (m)f - If = h4 - (m(x- a))f(4)(X) dX 

where 
4!g4(x)= 13X3(2- 3x), 0 _ x 2, 

3 ~~~~~~~~2' 

and 

g4(x) = g4(1 - x) = g4(1 + x) for all x. 

Proof. This result follows from the Euler-Maclaurin sum formula. In particular, 
it can be obtained by setting q = 4 in formula (A.5) of [5] and using the symmetry 
properties of Bernoulli polynomials [1, p. 804]. 

LEMMA 2. Let f E C'4'[a, a + h] and a be a real number. Then 

(m - - - = h~~~4 fa?h (-a 
S f - If a(S(2m)f If) = h G m(x a) f4)(X) dX 

where 

G4(x; a) = g4(X)-a2 24g4(2x) for all x. 

Proof. This follows directly from Lemma 1. 
LEMMA 3. The functions g4 and G4 have the following properties: 
g4(x) ? O for all x, 
G4(x; oa) ? O for all x when a < 2, 
G4(x; a) takes on both signs when a > 2. 
Proof. The first statement follows directly from the definition of g4. Note that 

4!G4(x; a) = 3X3[3x(a - 1) + 2- a], 0 < x < 14. 

It follows that G4 is nonnegative on [0, 4] when a < 2. Now, g4(x) is increasing and 
g4(2x) is decreasing on [4, 2]; so G4 is nonnegative there. Then, G4 is nonnegative 
everywhere since it is symmetric about ' and periodic. Finally, note that 4! G4(2; a) = 

41 and the term 3x(a - 1) + 2 - a is negative if a > 2 and x is near zero. Thus, G4 
takes on both signs when a > 2. 

We are now ready to prove several theorems concerning the stopping inequality. 
THEOREM 1. Let f E C'4'[a, a + h] and assume f '4' does not change sign in [a, a + h]. 

Then, the stopping inequality is validfor all m. 
Proof. First, assume f (4) > 0. Replace m by 2m in Lemma 1 and apply Lemma 3 
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to obtain 0 ? S(2m) - If. Then, using Lemmas 2 and 3 with a = 2, we have 

0 < S(2m)f _ If < S(m)f - S(2m) 

which implies the stopping inequality. The case where f ('4 < 0 is similar. 
We will now show that the stopping inequality is sharp for the class of functions 

covered by Theorem 1. 
THEOREM 2. Let 0 < K < 1 and m be a positive integer. Then there exists afunction f 

such that fW') has constant sign in [a, a + h] and 

IS(2m)f - IfI > K I S(m)f _ S(2m)fI 

Proof. Let a = (1 + K)/K in Lemma 2 to obtain the equation 
4 a?h a)/ 

K(S(m)f - S(2m)f) - (V(2m)f _ If) = Kh f G4(m(x a) + Kf(4)(X) dx 
m4 ~~h ' K /JAd. 

Since the kernel G4 is negative on part of the interval [a, a + h], we can choose f 4 > 0 
so that the right-hand side of the above equation is negative. Hence, 

K(S(m)f - S(2m)f) < S(2m)f _ If 

Applying Lemma 3 to Lemma 2 with a = 1, we see that the left side of this inequality 
is nonnegative, and the result follows. 

3. Asymptotic Validity of the Stopping Inequality. When f (4) is not of constant 
sign, we cannot give a rigorous bound such as that given in Theorem 1. However, we 
can show that under certain conditions the stopping inequality is asymptotically 
valid; that is, there exists an integer m0 such that the stopping inequality is satisfied 
for all m > min. 

THEOREM 3. Let f C C( Q) [a, a + h] with q > 2. Assume If (2) = O for r = 
2, 3, ... , q - 1, but If (2Q) $ 0. Then, as m -a ), the stopping inequality is eventually 
satisfied. 

Proof. Using formula (A.5) of [5], we see that, as m n , 

h2z a+h 

S(m)f - If = C2Q fa2Q)(x) dx + O(m2Q1), 

where C2Q is a nonzero constant. From this, we can write 

h2Q ra a+h 
S(2)f - If = C2Q 22Qm2Jz f 2a(x) dx + O(m2 1), 

(3) (1~~~~ 12raM 
S(m-f _ S(2m)f = (1 - 

2Q f(2)(x) dx + O(m2 1). 

Hence, 

(4) lim 
S (2m)f 

I 
f 1, 

S(M)f _ S(2m)f -22a 

which implies that the stopping inequality is eventually satisfied. 
In the limit, the S'2m'f approximation is roughly 22q times as accurate as the S(m)f 

approximation. Usually, q = 2 and the exit criterion based on (2) is roughly fifteen 
times too accurate. 
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Let us now point out that even for functions in C')'[a, a + h], m may have to be 
very large before the stopping inequality will be satisfied. 

THEOREM 4. Let k be a positive integer. There exists a function f C c` [a, a + h] 
such that the stopping inequality fails for the first k applications of Simpson's rule. 

Proof. Without loss of generality, we can assume the interval [a, a + h] to be 
[-1, 1]. Let 

f(x) = eax sin(2kTrx), 

where a # 0. Then, f C C`[- 1 1] and 

If = 2k r(l -e2a)/ea(a2 + 22k1r2) $ 0 

Clearly, f(x;) = 0 at all points x; required by Stm)f, m = 1, 2, 4, ... , 2k. Thus, 
S'm'f = 0 for m = 1, 2, 4, * , 2k, and the stopping inequality fails for the first k 
approximations. 

The stopping inequality is not always asymptotically valid. To see this, let 
f C C(2)[o0 1] be defined by 

f (x) = F(x, 4) F(X, 1), 

where 

F(x, t) = , O < x < t, 

= (X- t)3, t <x< 1. 

In terms of generalized functions, 

f 41(x) = 96(x- 4)-x66(x-- 

so Lemma 1 implies that 

S m)f- If = 34 [3g4(m) -24 

Using this equation, one can show that the ratio (S(2m)f - If)/(S(mf -S(2m)f) is 

periodic and takes on the value 499/285, whenever m is an odd power of 2. Thus, the 
stopping inequality fails infinitely often as m -a on. 

4. Modified Exit Procedure. If f satisfies the hypothesis of Theorem 3, then 
(3) implies that 

S(m) f _S(2m)f 2 
(5) lim -2m) (4m)f = 22Q, 

m-.s - sCO) - 

If 22 _ I is approximated by 22, in (4), then (4) and (5) imply that the quantity 
(S(2m)f - S(4mf)2/(Sm)f - S(2m)f) is asymptotically close to S(4m)f - If. This leads 
us to propose the following two-step exit rule: 

Accept the approximation S(4mrf, if 
(a) (S(m)f -S(2m)f)/(S(2m)f -S4m)f) is close to a power of 2, and 
(b) (S(2m)f S(4m)f)2/s(m)f- s(2m)fL < E. 

Condition (a) serves as a test to determine whether the O(m- 2- 1) terms are small 
enough so that the asymptotic formulas will be good approximations, while (b) 
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requires that an asymptotic estimate of the error not exceed E. Lyness [5] has proposed 
that the standard exit criterion (2) be replaced by IS"m'f- S(2m)f _ 15 E. When 
q = 2, one can see from (5) that condition (b) is similar, since it roughly requires that 
S(4mf _- S(2m'fI not exceed 16E. 

One evident disadvantage of such an exit procedure is that it cannot be applied 
before the third approximation. Nevertheless, sample calculations given in [7] indicate 
that the above procedure seems to be less conservative than the standard rule. It was 
also observed that the quantity in (a) tended to stray away from a power of two near 
the point at which round-off error began to dominate the truncation error. This 
quantity might be useful in determining the point of diminishing returns, as suggested 
by Lyness [6]. 
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